Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
N Engl J Med ; 388(21): 1931-1941, 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20241324

ABSTRACT

BACKGROUND: Whether the antiinflammatory and immunomodulatory effects of glucocorticoids may decrease mortality among patients with severe community-acquired pneumonia is unclear. METHODS: In this phase 3, multicenter, double-blind, randomized, controlled trial, we assigned adults who had been admitted to the intensive care unit (ICU) for severe community-acquired pneumonia to receive intravenous hydrocortisone (200 mg daily for either 4 or 7 days as determined by clinical improvement, followed by tapering for a total of 8 or 14 days) or to receive placebo. All the patients received standard therapy, including antibiotics and supportive care. The primary outcome was death at 28 days. RESULTS: A total of 800 patients had undergone randomization when the trial was stopped after the second planned interim analysis. Data from 795 patients were analyzed. By day 28, death had occurred in 25 of 400 patients (6.2%; 95% confidence interval [CI], 3.9 to 8.6) in the hydrocortisone group and in 47 of 395 patients (11.9%; 95% CI, 8.7 to 15.1) in the placebo group (absolute difference, -5.6 percentage points; 95% CI, -9.6 to -1.7; P = 0.006). Among the patients who were not undergoing mechanical ventilation at baseline, endotracheal intubation was performed in 40 of 222 (18.0%) in the hydrocortisone group and in 65 of 220 (29.5%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.40 to 0.86). Among the patients who were not receiving vasopressors at baseline, such therapy was initiated by day 28 in 55 of 359 (15.3%) of the hydrocortisone group and in 86 of 344 (25.0%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.43 to 0.82). The frequencies of hospital-acquired infections and gastrointestinal bleeding were similar in the two groups; patients in the hydrocortisone group received higher daily doses of insulin during the first week of treatment. CONCLUSIONS: Among patients with severe community-acquired pneumonia being treated in the ICU, those who received hydrocortisone had a lower risk of death by day 28 than those who received placebo. (Funded by the French Ministry of Health; CAPE COD ClinicalTrials.gov number, NCT02517489.).


Subject(s)
Anti-Inflammatory Agents , Community-Acquired Infections , Hydrocortisone , Pneumonia , Adult , Humans , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/mortality , Double-Blind Method , Hydrocortisone/adverse effects , Hydrocortisone/therapeutic use , Pneumonia/drug therapy , Pneumonia/mortality , Respiration, Artificial , Treatment Outcome
3.
BMJ Open ; 11(9): e048591, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1495462

ABSTRACT

INTRODUCTION: Pre-emptive inhaled antibiotics may be effective to reduce the occurrence of ventilator-associated pneumonia among critically ill patients. Meta-analysis of small sample size trials showed a favourable signal. Inhaled antibiotics are associated with a reduced emergence of antibiotic resistant bacteria. The aim of this trial is to evaluate the benefit of a 3-day course of inhaled antibiotics among patients undergoing invasive mechanical ventilation for more than 3 days on the occurrence of ventilator-associated pneumonia. METHODS AND ANALYSIS: Academic, investigator-initiated, parallel two group arms, double-blind, multicentre superiority randomised controlled trial. Patients invasively ventilated more than 3 days will be randomised to receive 20 mg/kg inhaled amikacin daily for 3 days or inhaled placebo (0.9% Sodium Chloride). Occurrence of ventilator-associated pneumonia will be recorded based on a standardised diagnostic framework from randomisation to day 28 and adjudicated by a centralised blinded committee. ETHICS AND DISSEMINATION: The protocol and amendments have been approved by the regional ethics review board and French competent authorities (Comité de protection des personnes Ouest I, No.2016-R29). All patients will be included after informed consent according to French law. Results will be disseminated in international scientific journals. TRIAL REGISTRATION NUMBERS: EudraCT 2016-001054-17 and NCT03149640.


Subject(s)
Amikacin , Pneumonia, Ventilator-Associated , Administration, Inhalation , Amikacin/administration & dosage , Double-Blind Method , Humans , Multicenter Studies as Topic , Pneumonia, Ventilator-Associated/prevention & control , Randomized Controlled Trials as Topic , Respiration, Artificial/adverse effects , Treatment Outcome
4.
JAMA ; 324(13): 1330-1341, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-739604

ABSTRACT

Importance: Effective therapies for patients with coronavirus disease 2019 (COVID-19) are needed, and clinical trial data have demonstrated that low-dose dexamethasone reduced mortality in hospitalized patients with COVID-19 who required respiratory support. Objective: To estimate the association between administration of corticosteroids compared with usual care or placebo and 28-day all-cause mortality. Design, Setting, and Participants: Prospective meta-analysis that pooled data from 7 randomized clinical trials that evaluated the efficacy of corticosteroids in 1703 critically ill patients with COVID-19. The trials were conducted in 12 countries from February 26, 2020, to June 9, 2020, and the date of final follow-up was July 6, 2020. Pooled data were aggregated from the individual trials, overall, and in predefined subgroups. Risk of bias was assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I2 statistic. The primary analysis was an inverse variance-weighted fixed-effect meta-analysis of overall mortality, with the association between the intervention and mortality quantified using odds ratios (ORs). Random-effects meta-analyses also were conducted (with the Paule-Mandel estimate of heterogeneity and the Hartung-Knapp adjustment) and an inverse variance-weighted fixed-effect analysis using risk ratios. Exposures: Patients had been randomized to receive systemic dexamethasone, hydrocortisone, or methylprednisolone (678 patients) or to receive usual care or placebo (1025 patients). Main Outcomes and Measures: The primary outcome measure was all-cause mortality at 28 days after randomization. A secondary outcome was investigator-defined serious adverse events. Results: A total of 1703 patients (median age, 60 years [interquartile range, 52-68 years]; 488 [29%] women) were included in the analysis. Risk of bias was assessed as "low" for 6 of the 7 mortality results and as "some concerns" in 1 trial because of the randomization method. Five trials reported mortality at 28 days, 1 trial at 21 days, and 1 trial at 30 days. There were 222 deaths among the 678 patients randomized to corticosteroids and 425 deaths among the 1025 patients randomized to usual care or placebo (summary OR, 0.66 [95% CI, 0.53-0.82]; P < .001 based on a fixed-effect meta-analysis). There was little inconsistency between the trial results (I2 = 15.6%; P = .31 for heterogeneity) and the summary OR was 0.70 (95% CI, 0.48-1.01; P = .053) based on the random-effects meta-analysis. The fixed-effect summary OR for the association with mortality was 0.64 (95% CI, 0.50-0.82; P < .001) for dexamethasone compared with usual care or placebo (3 trials, 1282 patients, and 527 deaths), the OR was 0.69 (95% CI, 0.43-1.12; P = .13) for hydrocortisone (3 trials, 374 patients, and 94 deaths), and the OR was 0.91 (95% CI, 0.29-2.87; P = .87) for methylprednisolone (1 trial, 47 patients, and 26 deaths). Among the 6 trials that reported serious adverse events, 64 events occurred among 354 patients randomized to corticosteroids and 80 events occurred among 342 patients randomized to usual care or placebo. Conclusions and Relevance: In this prospective meta-analysis of clinical trials of critically ill patients with COVID-19, administration of systemic corticosteroids, compared with usual care or placebo, was associated with lower 28-day all-cause mortality.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Coronavirus Infections/drug therapy , Glucocorticoids/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus , COVID-19 , Cause of Death , Coronavirus Infections/mortality , Critical Illness , Dexamethasone/therapeutic use , Humans , Hydrocortisone/therapeutic use , Methylprednisolone/therapeutic use , Pandemics , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic , SARS-CoV-2 , COVID-19 Drug Treatment
5.
JAMA ; 324(13): 1298-1306, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-739601

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) is associated with severe lung damage. Corticosteroids are a possible therapeutic option. Objective: To determine the effect of hydrocortisone on treatment failure on day 21 in critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute respiratory failure. Design, Setting, and Participants: Multicenter randomized double-blind sequential trial conducted in France, with interim analyses planned every 50 patients. Patients admitted to the intensive care unit (ICU) for COVID-19-related acute respiratory failure were enrolled from March 7 to June 1, 2020, with last follow-up on June 29, 2020. The study intended to enroll 290 patients but was stopped early following the recommendation of the data and safety monitoring board. Interventions: Patients were randomized to receive low-dose hydrocortisone (n = 76) or placebo (n = 73). Main Outcomes and Measures: The primary outcome, treatment failure on day 21, was defined as death or persistent dependency on mechanical ventilation or high-flow oxygen therapy. Prespecified secondary outcomes included the need for tracheal intubation (among patients not intubated at baseline); cumulative incidences (until day 21) of prone position sessions, extracorporeal membrane oxygenation, and inhaled nitric oxide; Pao2:Fio2 ratio measured daily from day 1 to day 7, then on days 14 and 21; and the proportion of patients with secondary infections during their ICU stay. Results: The study was stopped after 149 patients (mean age, 62.2 years; 30.2% women; 81.2% mechanically ventilated) were enrolled. One hundred forty-eight patients (99.3%) completed the study, and there were 69 treatment failure events, including 11 deaths in the hydrocortisone group and 20 deaths in the placebo group. The primary outcome, treatment failure on day 21, occurred in 32 of 76 patients (42.1%) in the hydrocortisone group compared with 37 of 73 (50.7%) in the placebo group (difference of proportions, -8.6% [95.48% CI, -24.9% to 7.7%]; P = .29). Of the 4 prespecified secondary outcomes, none showed a significant difference. No serious adverse events were related to the study treatment. Conclusions and Relevance: In this study of critically ill patients with COVID-19 and acute respiratory failure, low-dose hydrocortisone, compared with placebo, did not significantly reduce treatment failure (defined as death or persistent respiratory support) at day 21. However, the study was stopped early and likely was underpowered to find a statistically and clinically important difference in the primary outcome. Trial Registration: ClinicalTrials.gov Identifier: NCT02517489.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , Hydrocortisone/therapeutic use , Pneumonia, Viral/drug therapy , Respiration, Artificial , Respiratory Insufficiency/therapy , Aged , Anti-Inflammatory Agents/administration & dosage , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Critical Illness , Double-Blind Method , Early Termination of Clinical Trials , Female , Humans , Hydrocortisone/administration & dosage , Male , Middle Aged , Oxygen Inhalation Therapy , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/etiology , SARS-CoV-2 , Treatment Failure , COVID-19 Drug Treatment
6.
Trials ; 21(1): 734, 2020 Aug 24.
Article in English | MEDLINE | ID: covidwho-727295

ABSTRACT

OBJECTIVES: Primary objective: To estimate the effect of corticosteroids compared with usual care or placebo on mortality up to 28 days after randomization. Secondary objectives: To examine whether the effect of corticosteroids compared with usual care or placebo on mortality up to 28 days after randomization varies between subgroups related to treatment characteristics, disease severity at the time of randomization, patient characteristics, or risk of bias. To examine the effect of corticosteroids compared with usual care or placebo on serious adverse events. STUDY DESIGN: Prospective meta-analysis of randomized controlled trials. Both placebo-controlled and open-label trials are eligible. PARTICIPANTS: Hospitalised, critically ill patients with suspected or confirmed COVID-19. INTERVENTION AND COMPARATOR: Intervention groups will have received therapeutic doses of a steroid (dexamethasone, hydrocortisone or methylprednisolone) with IV or oral administration immediately after randomization. The comparator groups will have received standard of care or usual care or placebo. MAIN OUTCOME: All-cause mortality up to 28 days after randomization. SEARCH METHODS: Systematic searching of clinicaltrials.gov , EudraCT, the WHO ISRCTN registry, and the Chinese clinical trials registry. Additionally, research and WHO networks will be asked for relevant trials. RISK OF BIAS ASSESSMENTS: These will be based on the Cochrane RoB 2 tool, and will use structured information provided by the trial investigators on a form designed for this prospective meta-analysis. We will use GRADE to assess the certainty of the evidence. STATISTICAL ANALYSES: Trial investigators will provide data on the numbers of participants who did and did not experience each outcome according to intervention group, overall and in specified subgroups. We will conduct fixed-effect (primary analysis) and random-effects (Paule-Mandel estimate of heterogeneity and Hartung-Knapp adjustment) meta-analyses. We will quantify inconsistency in effects between trials using I2 statistics. Evidence for subgroup effects will be quantified by ratios of odds ratios comparing effects in the subgroups, and corresponding interaction p-values. Comparisons between subgroups defined by trial characteristics will be made using random-effects meta-regression. Comparisons between subgroups defined by patient characteristics will be made by estimating trial-specific ratios of odds ratios comparing intervention effects between subgroups then combining these using random-effects meta-analysis. Steroid interventions will be classified as high or low dose according to whether the dose is greater or less than or equal to 400 mg hydrocortisone per day or equivalent. We will use network meta-analysis methods to make comparisons between the effects of high and low dose steroid interventions (because one trial randomized participants to both low and high dose steroid arms). PROSPERO REGISTRATION NUMBER: CRD42020197242 FULL PROTOCOL: The full protocol for this prospective meta-analysis is attached as an additional file, accessible from the Trials website (Additional file 1). To expedite dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol for the systematic review.


Subject(s)
Coronavirus Infections/drug therapy , Glucocorticoids/therapeutic use , Pneumonia, Viral/drug therapy , Adrenal Cortex Hormones/therapeutic use , Betacoronavirus , COVID-19 , Critical Illness , Dexamethasone/therapeutic use , Humans , Hydrocortisone/therapeutic use , Methylprednisolone/therapeutic use , Pandemics , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL